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1.0 Initial steady state:

At initial steady state (@ t =0), we have

( P(0) =P,
| H,(0) = H,
Q1(0) = Q_l
|H2(0) :H_z
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Tank?2

At any given instance the liquid height level will increase as the tank has only inlet no outlet
and hence the value has no steady state or static equilibrium.



2.0 Transfer functions and governing equations:

The equation of the system as t > 0.
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Tank 1
Compliance is given by

dv
C1 = d_I-Il - dV = CldHl

Conservation of mass,
pCidH; = p[Q,(t) — Q,(t)]dt
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Tank 2
Compliance is given by

av
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Conservation of mass,

Cpdh, = [q,(t)]dt

Cydh, = [hl(t)l dt
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Again from equations (4) and (5)
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3.0 System parameters:

Case Time Static Damping Natural Damped
constant (1) Sensitivity (K) constant ({) frequency (w,)  frequency (wg,)
zl(s) R,R,C, o PR 1
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For second order system:
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where #(f) = reference input (or excitation or set point or desired value)

also

() = controlled output (or response)
ap. ay. a. by. by = system parameters

@, = Iﬂ = (undamped) natural frequency
ap

-_a
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= damping ratio

‘ @, = o,1-¢* = damped natural frequency

b

K =— = static sensitivity (or gain)
a
2

b
K==
4

However, in the physical world, coming up with the natural frequency equaling
zero. And when this is the case, we know that T = 2*pi/omega, which says that T =
infinity, so it never makes a complete period of getting back to where it started. So
when we see a negative number for the natural frequency, assume that in the perfect
world with no air drag and friction, the period is just infinity as when omega is zero

and infinite gain.
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4.0 Steady state response:

Steadv-state step responses. If the change in pressure source pi(f) is a step function:
T, for =0
for <0
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Using the final value theorem,

For, foss = lim fo(t) =lim sFy(s)
t-0 s-0

Transfer Function Steady state 1% of steady state
H.(5) R, . RiR; (4
L pg(R1+R;) Hqgs = —Zﬁl R+ ks
Pi(s) RIRZCIS 1 pg(Rl + RZ)
R{+R, T
R,Cys 1
0,(s) PI(R1+Rz) ~ pg(Ri+R3) Q1es = 1 7 RiRy Gy
! R1R;CyS pg(Ry + Ry) R; + R,
P;(s) m +1
1
H,(s) pg(R{+R;) Never reach a static
2tS R.R, 5 H,., = infinity equilibrium, no steady
P,(s) R,+R, C1Cys% + (3s state always increase.
1
Q ( ) pg(R1+R2) QZ = ;ﬁ ﬂzcl
x215) RiRyCis | 4 * pg(Ry +R)™ Ry +R,
) R1+R, +




